Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Med J Aust ; 220(6): 282-303, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38522009

ABSTRACT

The MJA-Lancet Countdown on health and climate change in Australia was established in 2017 and produced its first national assessment in 2018 and annual updates in 2019, 2020, 2021 and 2022. It examines five broad domains: health hazards, exposures and impacts; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. In this, the sixth report of the MJA-Lancet Countdown, we track progress on an extensive suite of indicators across these five domains, accessing and presenting the latest data and further refining and developing our analyses. Our results highlight the health and economic costs of inaction on health and climate change. A series of major flood events across the four eastern states of Australia in 2022 was the main contributor to insured losses from climate-related catastrophes of $7.168 billion - the highest amount on record. The floods also directly caused 23 deaths and resulted in the displacement of tens of thousands of people. High red meat and processed meat consumption and insufficient consumption of fruit and vegetables accounted for about half of the 87 166 diet-related deaths in Australia in 2021. Correction of this imbalance would both save lives and reduce the heavy carbon footprint associated with meat production. We find signs of progress on health and climate change. Importantly, the Australian Government released Australia's first National Health and Climate Strategy, and the Government of Western Australia is preparing a Health Sector Adaptation Plan. We also find increasing action on, and engagement with, health and climate change at a community level, with the number of electric vehicle sales almost doubling in 2022 compared with 2021, and with a 65% increase in coverage of health and climate change in the media in 2022 compared with 2021. Overall, the urgency of substantial enhancements in Australia's mitigation and adaptation responses to the enormous health and climate change challenge cannot be overstated. Australia's energy system, and its health care sector, currently emit an unreasonable and unjust proportion of greenhouse gases into the atmosphere. As the Lancet Countdown enters its second and most critical phase in the leadup to 2030, the depth and breadth of our assessment of health and climate change will be augmented to increasingly examine Australia in its regional context, and to better measure and track key issues in Australia such as mental health and Aboriginal and Torres Strait Islander health and wellbeing.


Subject(s)
Climate Change , Health Care Sector , Humans , Australia , Mental Health , Health Planning
2.
Med J Aust ; 219(11): 542-548, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37992722

ABSTRACT

OBJECTIVES: To assess the population health impact of high temperatures on workplace health and safety by estimating the burden of heat-attributable occupational injury in Australia. STUDY DESIGN, SETTING: Retrospective observational study; estimation of burden of occupational injury in Australia attributable to high temperatures during 2014-19, based on Safe Work Australia (work-related traumatic injury fatalities and workers' compensation databases) and Australian Institute of Health and Welfare data (Australian Burden of Disease Study and National Hospital Morbidity databases), and a meta-analysis of climate zone-specific risk data. MAIN OUTCOME MEASURE: Burden of heat-attributable occupational injuries as disability-adjusted life years (DALYs), comprising the numbers of years of life lived with disability (YLDs) and years of life lost (YLLs), nationally, by Köppen-Geiger climate zone, and by state and territory. RESULTS: During 2014-19, an estimated 42 884 years of healthy life were lost to occupational injury, comprising 39 485 YLLs (92.1%) and 3399 YLDs (7.9%), at a rate of 0.80 DALYs per 1000 workers per year. A total of 967 occupational injury-related DALYs were attributable to heat (2.3% of occupational injury-related DALYs), comprising 890 YLLs (92%) and 77 YLDs (8%). By climate zone, the heat-attributable proportion was largest in the tropical Am (12 DALYs; 3.5%) and Aw zones (34 DALYs; 3.5%); by state and territory, the proportion was largest in New South Wales and Queensland (each 2.9%), which also included the largest numbers of heat-attributable occupational injury-related DALYs (NSW: 379 DALYs, 39% of national total; Queensland: 308 DALYs; 32%). CONCLUSION: An estimated 2.3% of the occupational injury burden in Australia is attributable to high ambient temperatures. To prevent this burden increasing with global warming, adaptive measures and industry-based policies are needed to safeguard workplace health and safety, particularly in heat-exposed industries, such as agriculture, transport, and construction.


Subject(s)
Life Expectancy , Occupational Injuries , Humans , Australia/epidemiology , Global Burden of Disease , Observational Studies as Topic , Occupational Injuries/epidemiology , Quality-Adjusted Life Years , Risk Factors , Temperature
4.
Lancet Reg Health West Pac ; 41: 100916, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37867620

ABSTRACT

Background: The dual impacts of a warming climate and population ageing lead to an increasing kidney disease prevalence, highlighting the importance of quantifying the burden of kidney disease (BoKD) attributable to high temperature, yet studies on this subject are limited. The study aims to quantify the BoKD attributable to high temperatures in Australia across all states and territories, and project future BoKD under climatic, population and adaptation scenarios. Methods: Data on disability-adjusted-life-years (DALYs) due to kidney disease, including years of life lost (YLL), and years lived with disability (YLD), were collected during 2003-2018 (baseline) across all states and territories in Australia. The temperature-response association was estimated using a meta-regression model. Future temperature projections were calculated using eight downscaled climate models to estimate changes in attributable BoKD centred around 2030s and 2050s, under two greenhouse gas emissions scenarios (RCP4.5 and RCP8.5), while considering changes in population size and age structure, and human adaptation to climate change. Findings: Over the baseline (2003-2018), high-temperature contributed to 2.7% (Standard Deviation: 0.4%) of the observed BoKD in Australia. The future population attributable fraction and the attributable BoKD, projected using RCP4.5 and RCP8.5, showed a gradually increasing trend when assuming no human adaptation. Future projections were most strongly influenced by the population change, with the high temperature-related BoKD increasing by 18.4-67.4% compared to the baseline under constant population and by 100.2-291.2% when accounting for changes in population size and age structure. However, when human adaptation was adopted (from no to partial to full), the high temperature-related BoKD became smaller. Interpretation: It is expected that increasing high temperature exposure will substantially contribute to higher BoKD across Australia, underscoring the urgent need for public health interventions to mitigate the negative health impacts of a warming climate on BoKD. Funding: Australian Research Council Discovery Program.

7.
Int J Epidemiol ; 52(3): 783-795, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36511334

ABSTRACT

BACKGROUND: With high temperature becoming an increasing health risk due to a changing climate, it is important to quantify the scale of the problem. However, estimating the burden of disease (BoD) attributable to high temperature can be challenging due to differences in risk patterns across geographical regions and data accessibility issues. METHODS: We present a methodological framework that uses Köppen-Geiger climate zones to refine exposure levels and quantifies the difference between the burden observed due to high temperatures and what would have been observed if the population had been exposed to the theoretical minimum risk exposure distribution (TMRED). Our proposed method aligned with the Australian Burden of Disease Study and included two parts: (i) estimation of the population attributable fractions (PAF); and then (ii) estimation of the BoD attributable to high temperature. We use suicide and self-inflicted injuries in Australia as an example, with most frequent temperatures (MFTs) as the minimum risk exposure threshold (TMRED). RESULTS: Our proposed framework to estimate the attributable BoD accounts for the importance of geographical variations of risk estimates between climate zones, and can be modified and adapted to other diseases and contexts that may be affected by high temperatures. CONCLUSIONS: As the heat-related BoD may continue to increase in the future, this method is useful in estimating burdens across climate zones. This work may have important implications for preventive health measures, by enhancing the reproducibility and transparency of BoD research.


Subject(s)
Cold Temperature , Hot Temperature , Humans , Temperature , Reproducibility of Results , Australia/epidemiology , Cost of Illness , Climate Change
8.
Med J Aust ; 217(9): 439-458, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36283699

ABSTRACT

The MJA-Lancet Countdown on health and climate change in Australia was established in 2017 and produced its first national assessment in 2018 and annual updates in 2019, 2020 and 2021. It examines five broad domains: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. In this, the fifth year of the MJA-Lancet Countdown, we track progress on an extensive suite of indicators across these five domains, accessing and presenting the latest data and further refining and developing our analyses. Within just two years, Australia has experienced two unprecedented national catastrophes - the 2019-2020 summer heatwaves and bushfires and the 2021-2022 torrential rains and flooding. Such events are costing lives and displacing tens of thousands of people. Further, our analysis shows that there are clear signs that Australia's health emergency management capacity substantially decreased in 2021. We find some signs of progress with respect to health and climate change. The states continue to lead the way in health and climate change adaptation planning, with the Victorian plan being published in early 2022. At the national level, we note progress in health and climate change research funding by the National Health and Medical Research Council. We now also see an acceleration in the uptake of electric vehicles and continued uptake of and employment in renewable energy. However, we also find Australia's transition to renewables and zero carbon remains unacceptably slow, and the Australian Government's continuing failure to produce a national climate change and health adaptation plan places the health and lives of Australians at unnecessary risk today, which does not bode well for the future.


Subject(s)
Climate Change , Renewable Energy , Humans , Australia , Health Planning
9.
Lancet Planet Health ; 6(6): e484-e495, 2022 06.
Article in English | MEDLINE | ID: mdl-35709806

ABSTRACT

BACKGROUND: Heat exposure is an important but underappreciated risk factor contributing to cardiovascular disease. Warming temperatures might therefore pose substantial challenges to population health, especially in a rapidly aging population. To address a potential increase in the burden of cardiovascular disease, a better understanding of the effects of ambient heat on different types of cardiovascular disease and factors contributing to vulnerability is required, especially in the context of climate change. This study reviews the current epidemiological evidence linking heat exposures (both high temperatures and heatwaves) with cardiovascular disease outcomes, including mortality and morbidity. METHODS: In this systematic review and meta-analysis, we searched PubMed, Embase, and Scopus for literature published between Jan 1, 1990, and March 10, 2022, and evaluated the quality of the evidence following the Navigation Guide Criteria. We included original research on independent study populations in which the exposure metric was high temperatures or heatwaves, and observational studies using ecological time series, case crossover, or case series study designs comparing risks over different exposures or time periods. Reviews, commentaries, grey literature, and studies that examined only seasonal effects without explicitly considering temperature were excluded. The risk estimates were derived from included articles and if insufficient data were available we contacted the authors to provide clarification. We did a random-effects meta-analysis to pool the relative risk (RR) of the association between high temperatures and heatwaves and cardiovascular disease outcomes. The study protocol was registered with PROSPERO (CRD42021232601). FINDINGS: In total, 7360 results were returned from our search of which we included 282 articles in the systematic review, and of which 266 were eligible for the meta-analysis. There was substantial heterogeneity for both mortality (high temperatures: I2=93·6%, p<0·0001; heatwaves: I2=98·9%, p<0·0001) and morbidity (high temperatures: I2=98·8%, p<0·0001; heatwaves: I2=83·5%, p<0·0001). Despite the heterogeneity in environmental conditions and population dynamics among the reviewed studies, results showed that a 1°C increase in temperature was positively associated with cardiovascular disease-related mortality across all considered diagnoses. The overall risk of cardiovascular disease-related mortality increased by 2·1% (RR 1·021 [95%CI 1·020-1·023]), with the highest specific disease risk being for stroke and coronary heart disease. A 1°C temperature rise was also associated with a significant increase in morbidity due to arrhythmias and cardiac arrest and coronary heart disease. Our findings suggest heat exposure leads to elevated risk of morbidity and mortality for women, people 65 years and older, individuals living in tropical climates, and those in countries of lower-middle income. Heatwaves were also significantly associated with a 17% increase in risk of mortality (RR 1·117 [95% CI 1·093-1·141]), and increasing heatwave intensity with an increasing risk (RR 1·067 [95% CI 1·056-1·078] for low intensity, 1·088 [1·058-1·119] for middle intensity, and 1·189 [1·109-1·269] for high intensity settings). INTERPRETATION: This review strengthens the evidence on the increase in cardiovascular disease risk due to ambient heat exposures in different climate zones. The widespread prevalence of exposure to hot temperatures, in conjunction with an increase in the proportion of older people in the population, might result in a rise in poor cardiovascular disease health outcomes associated with a warming climate. Evidence-based prevention measures are needed to attenuate peaks in cardiovascular events during hot spells, thereby lowering the worldwide total heat-related burden of cardiovascular disease-related morbidity and death. FUNDING: Australian Research Council Discovery Program.


Subject(s)
Cardiovascular Diseases , Aged , Australia , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Climate Change , Female , Hot Temperature , Humans , Risk Factors
10.
Lancet Planet Health ; 6(4): e301-e309, 2022 04.
Article in English | MEDLINE | ID: mdl-35397218

ABSTRACT

BACKGROUND: Increasing air conditioner use for cooling indoor spaces has the potential to be a primary driver of global greenhouse gas emissions. Moving indoor air with residential fans can raise the temperature threshold at which air conditioning needs to be turned on to maintain the thermal comfort of building occupants. We investigate whether fans can be used to reduce air conditioner use and associated greenhouse gas emissions. METHODS: We developed an integrated framework, featuring a dynamic adaptive thermal comfort model with a geographical information system-based spatially gridded map of Australia, further complemented with census data. We assessed the change in energy use and associated greenhouse gas emissions for five scenarios of air conditioner and fan use: an air conditioner-only scenario (no fans); and four fan-first scenarios with fans operating at speeds of 0·1 m/s, 0·3 m/s, 0·8 m/s, and 1·2 m/s, with air conditioning used only once the upper temperature threshold for thermal discomfort is exceeded. For each day of the selected case study year, we estimated the upper temperature limit for thermal comfort and the number of hours in which air conditioning would be switched on. FINDINGS: The thermal comfort threshold was increased by the use of fans compared with air conditioner use alone. We found that widespread indoor fan use had the potential to reduce energy demand and greenhouse gas emissions attributable to air conditioner use, without compromising thermal comfort. Taking an annual perspective, the use of fans with air speeds of 1·2 m/s compared with air conditioner use alone resulted in a 76% reduction in energy use (from 5592 GWh to 1344 GWh) and associated greenhouse gas emissions (5091 kilotonnes to 1208 kilotonnes). INTERPRETATION: A common strategy to cope with hot weather is the use of air conditioners, which feed a cycle of high electricity consumption, often delivered by fossil fuel power stations that in turn contribute to further increases in emissions. Moving air with electric fans could serve as a sustainable alternative, reducing air conditioner use and associated greenhouse gas emissions without sacrificing thermal comfort. FUNDING: Australian Research Council, New South Wales Department of Planning, Industry and Environment, and The University of Sydney.


Subject(s)
Greenhouse Gases , Air Conditioning , Australia , Cold Temperature , Humans , Temperature
11.
One Health Outlook ; 3(1): 21, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34872624

ABSTRACT

One Health is a ground-breaking philosophy for improving health. It imaginatively challenges centuries-old assumptions about wellbeing and is now widely regarded as the 'best solution' for mitigating human health problems, including pandemic zoonotic diseases. One Health's success is imperative because without big changes to the status quo, great suffering and ill-health will follow. However, even in its more ambitious guises, One Health is not radical enough. For example, it has not embraced the emerging philosophical view that historical anthropocentrism is an unfounded ethical prejudice against other animals. This paper argues that One Health should be more imaginative and adventurous in its core philosophy and ultimately in its recommendations and activities. It must expand the circle of moral concern beyond a narrow focus on human interests to include nonhuman beings and the environment. On this bolder agenda, progressive ethical and practical thinking converge for the benefit of the planet and its diverse inhabitants-human and nonhuman.

12.
Med J Aust ; 215(9): 390-392.e22, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34670328

ABSTRACT

The MJA-Lancet Countdown on health and climate change in Australia was established in 2017, and produced its first national assessment in 2018, its first annual update in 2019, and its second annual update in 2020. It examines indicators across five broad domains: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. Our special report in 2020 focused on the unprecedented and catastrophic 2019-20 Australian bushfire season, highlighting indicators that explore the relationships between health, climate change and bushfires. For 2021, we return to reporting on the full suite of indicators across each of the five domains and have added some new indicators. We find that Australians are increasingly exposed to and vulnerable to excess heat and that this is already limiting our way of life, increasing the risk of heat stress during outdoor sports, and decreasing work productivity across a range of sectors. Other weather extremes are also on the rise, resulting in escalating social, economic and health impacts. Climate change disproportionately threatens Indigenous Australians' wellbeing in multiple and complex ways. In response to these threats, we find positive action at the individual, local, state and territory levels, with growing uptake of rooftop solar and electric vehicles, and the beginnings of appropriate adaptation planning. However, this is severely undermined by national policies and actions that are contrary and increasingly place Australia out on a limb. Australia has responded well to the COVID-19 public health crisis (while still emerging from the bushfire crisis that preceded it) and it now needs to respond to and prepare for the health crises resulting from climate change.


Subject(s)
Climate Change , Conservation of Natural Resources , Disasters , Public Health , Australia , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Policy
13.
Sci Total Environ ; 801: 149806, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34467930

ABSTRACT

BACKGROUND: The occurrence or exacerbation of kidney disease has been documented as a growing problem associated with hot weather. The implementation of effective prevention measures requires a better understanding of the risk factors that increase susceptibility. To fill gaps in knowledge, this study reviews the current literature on the effects of heat on kidney-disease outcomes (ICD-10 N00-N39), including morbidity and mortality. METHODS: Databases were systematically searched for relevant literature published between 1990 and 2020 and the quality of evidence evaluated. We performed random effects meta-analysis to calculate the pooled relative risks (RRs) of the association between high temperatures (and heatwaves) and kidney disease outcomes. We further evaluated vulnerability concerning contextual population characteristics. RESULTS: Of 2739 studies identified, 91 were reviewed and 82 of these studies met the criteria for inclusion in a meta-analysis. Findings showed that with a 1 °C increase in temperature, the risk of kidney-related morbidity increased by 1% (RR 1.010; 95% CI: 1.009-1.011), with the greatest risk for urolithiasis. Heatwaves were also associated with increased morbidity with a trend observed with heatwave intensity. During low-intensity heatwaves, there was an increase of 5.9% in morbidity, while during high-intensity heatwaves there was a 7.7% increase. There were greater RRs for males, people aged ≤64 years, and those living in temperate climate zones. Similarly, for every 1 °C temperature increase, there was a 3% (RR 1.031; 95% CI: 1.018-1.045) increase in the risk of kidney-related mortality, which also increased during heatwaves. CONCLUSIONS: High temperatures (and heatwaves) are associated with an elevated risk of kidney disease outcomes, particularly urolithiasis. Preventive measures that may minimize risks in vulnerable individuals during hot spells are discussed.


Subject(s)
Hot Temperature , Kidney Diseases , Humans , Infrared Rays , Kidney Diseases/epidemiology , Morbidity , Risk Factors
14.
Lancet ; 398(10301): 698-708, 2021 08 21.
Article in English | MEDLINE | ID: mdl-34419205

ABSTRACT

Hot ambient conditions and associated heat stress can increase mortality and morbidity, as well as increase adverse pregnancy outcomes and negatively affect mental health. High heat stress can also reduce physical work capacity and motor-cognitive performances, with consequences for productivity, and increase the risk of occupational health problems. Almost half of the global population and more than 1 billion workers are exposed to high heat episodes and about a third of all exposed workers have negative health effects. However, excess deaths and many heat-related health risks are preventable, with appropriate heat action plans involving behavioural strategies and biophysical solutions. Extreme heat events are becoming permanent features of summer seasons worldwide, causing many excess deaths. Heat-related morbidity and mortality are projected to increase further as climate change progresses, with greater risk associated with higher degrees of global warming. Particularly in tropical regions, increased warming might mean that physiological limits related to heat tolerance (survival) will be reached regularly and more often in coming decades. Climate change is interacting with other trends, such as population growth and ageing, urbanisation, and socioeconomic development, that can either exacerbate or ameliorate heat-related hazards. Urban temperatures are further enhanced by anthropogenic heat from vehicular transport and heat waste from buildings. Although there is some evidence of adaptation to increasing temperatures in high-income countries, projections of a hotter future suggest that without investment in research and risk management actions, heat-related morbidity and mortality are likely to increase.


Subject(s)
Climate Change , Global Warming , Heat Stress Disorders/epidemiology , Heat Stress Disorders/etiology , Hot Temperature/adverse effects , Environmental Exposure , Heat Stress Disorders/mortality , Heat Stress Disorders/prevention & control , Humans , Morbidity/trends , Mortality/trends , Occupational Exposure , Physiological Phenomena , Sports/physiology , Urbanization
15.
Lancet ; 398(10301): 709-724, 2021 08 21.
Article in English | MEDLINE | ID: mdl-34419206

ABSTRACT

Heat extremes (ie, heatwaves) already have a serious impact on human health, with ageing, poverty, and chronic illnesses as aggravating factors. As the global community seeks to contend with even hotter weather in the future as a consequence of global climate change, there is a pressing need to better understand the most effective prevention and response measures that can be implemented, particularly in low-resource settings. In this Series paper, we describe how a future reliance on air conditioning is unsustainable and further marginalises the communities most vulnerable to the heat. We then show that a more holistic understanding of the thermal environment at the landscape and urban, building, and individual scales supports the identification of numerous sustainable opportunities to keep people cooler. We summarise the benefits (eg, effectiveness) and limitations of each identified cooling strategy, and recommend optimal interventions for settings such as aged care homes, slums, workplaces, mass gatherings, refugee camps, and playing sport. The integration of this information into well communicated heat action plans with robust surveillance and monitoring is essential for reducing the adverse health consequences of current and future extreme heat.


Subject(s)
Air Conditioning/trends , Built Environment , Climate Change , Extreme Heat/adverse effects , Hot Temperature/adverse effects , Aged , Aging , Drinking Water , Electricity , Humans
16.
Lancet Planet Health ; 5(6): e368-e377, 2021 06.
Article in English | MEDLINE | ID: mdl-34119011

ABSTRACT

BACKGROUND: In hot weather, electric fans can potentially provide effective cooling for people, with lower greenhouse gas emissions and cost than air conditioning. However, international public health organisations regularly discourage fan use in temperatures higher than 35°C, despite little evidence. We aimed to determine humidity-dependent temperature thresholds at which electric fans would become detrimental in different age groups. METHODS: We used biophysical modelling to determine the upper humidity-dependent temperature thresholds at which fan use would become detrimental (ie, worsen heat stress) for healthy young adults (aged 18-40 years), healthy older adults (aged ≥65 years), and older adults taking anticholinergic medication. We also obtained hourly environmental data for the period Jan 1, 2007, to Dec 31, 2019, for 108 populous cities to determine the number of days fan use would be effective for cooling, standardised to a 31-day hot weather month. We established simplified temperature thresholds for future fan use recommendations on the basis of temperatures below which fan use would never have been detrimental between Jan 1, 2007, and Dec 31, 2019, across all prevailing levels of ambient humidity. FINDINGS: According to our model, fan use would have been beneficial on 30·0 (96·6%) of 31 hot weather days for healthy young adults and 29·4 (94·9%) of 31 hot weather days for both older adults and older adults taking anticholinergic medication between Jan 1, 2007, and Dec 31, 2019. Adherence to the current WHO recommendation of fan use below temperatures of 35°C only, fan use would have been recommended on 27·2 days (87·7%) of 31 hot weather days. According to our simplified thresholds for fan use (at temperatures <39·0°C for healthy young adults, <38·0°C for healthy older adults, and <37·0°C for older adults taking anticholinergic medication), fan use would have been recommended on 29·6 (95·5%) of 31 hot weather days in healthy young adults, 29·4 (94·8%) days in healthy older adults, and 28·8 (93·0%) days in older adults taking anticholinergic medication between Jan 1, 2007, and Dec 31, 2019. INTERPRETATION: Electric fan use, particularly for healthy young adults, would not have worsened heat stress on the majority of study days between 2007 and 2019. Our newly proposed thresholds for fan use provide simple guidelines that improve future heatwave fan use recommendations. FUNDING: None.


Subject(s)
Body Temperature Regulation , Heat Stress Disorders , Aged , Cold Temperature , Hot Temperature , Humans , Humidity , Young Adult
17.
Med J Aust ; 214 Suppl 8: S5-S40, 2021 05.
Article in English | MEDLINE | ID: mdl-33934362

ABSTRACT

CHAPTER 1: HOW AUSTRALIA IMPROVED HEALTH EQUITY THROUGH ACTION ON THE SOCIAL DETERMINANTS OF HEALTH: Do not think that the social determinants of health equity are old hat. In reality, Australia is very far away from addressing the societal level drivers of health inequity. There is little progressive policy that touches on the conditions of daily life that matter for health, and action to redress inequities in power, money and resources is almost non-existent. In this chapter we ask you to pause this reality and come on a fantastic journey where we envisage how COVID-19 was a great disruptor and accelerator of positive progressive action. We offer glimmers of what life could be like if there was committed and real policy action on the social determinants of health equity. It is vital that the health sector assists in convening the multisectoral stakeholders necessary to turn this fantasy into reality. CHAPTER 2: ABORIGINAL AND TORRES STRAIT ISLANDER CONNECTION TO CULTURE: BUILDING STRONGER INDIVIDUAL AND COLLECTIVE WELLBEING: Aboriginal and Torres Strait Islander peoples have long maintained that culture (ie, practising, maintaining and reclaiming it) is vital to good health and wellbeing. However, this knowledge and understanding has been dismissed or described as anecdotal or intangible by Western research methods and science. As a result, Aboriginal and Torres Strait Islander culture is a poorly acknowledged determinant of health and wellbeing, despite its significant role in shaping individuals, communities and societies. By extension, the cultural determinants of health have been poorly defined until recently. However, an increasing amount of scientific evidence supports what Aboriginal and Torres Strait Islander people have always said - that strong culture plays a significant and positive role in improved health and wellbeing. Owing to known gaps in knowledge, we aim to define the cultural determinants of health and describe their relationship with the social determinants of health, to provide a full understanding of Aboriginal and Torres Strait Islander wellbeing. We provide examples of evidence on cultural determinants of health and links to improved Aboriginal and Torres Strait Islander health and wellbeing. We also discuss future research directions that will enable a deeper understanding of the cultural determinants of health for Aboriginal and Torres Strait Islander people. CHAPTER 3: PHYSICAL DETERMINANTS OF HEALTH: HEALTHY, LIVEABLE AND SUSTAINABLE COMMUNITIES: Good city planning is essential for protecting and improving human and planetary health. Until recently, however, collaboration between city planners and the public health sector has languished. We review the evidence on the health benefits of good city planning and propose an agenda for public health advocacy relating to health-promoting city planning for all by 2030. Over the next 10 years, there is an urgent need for public health leaders to collaborate with city planners - to advocate for evidence-informed policy, and to evaluate the health effects of city planning efforts. Importantly, we need integrated planning across and between all levels of government and sectors, to create healthy, liveable and sustainable cities for all. CHAPTER 4: HEALTH PROMOTION IN THE ANTHROPOCENE: THE ECOLOGICAL DETERMINANTS OF HEALTH: Human health is inextricably linked to the health of the natural environment. In this chapter, we focus on ecological determinants of health, including the urgent and critical threats to the natural environment, and opportunities for health promotion arising from the human health co-benefits of actions to protect the health of the planet. We characterise ecological determinants in the Anthropocene and provide a sobering snapshot of planetary health science, particularly the momentous climate change health impacts in Australia. We highlight Australia's position as a major fossil fuel producer and exporter, and a country lacking cohesive and timely emissions reduction policy. We offer a roadmap for action, with four priority directions, and point to a scaffold of guiding approaches - planetary health, Indigenous people's knowledge systems, ecological economics, health co-benefits and climate-resilient development. Our situation requires a paradigm shift, and this demands a recalibration of health promotion education, research and practice in Australia over the coming decade. CHAPTER 5: DISRUPTING THE COMMERCIAL DETERMINANTS OF HEALTH: Our vision for 2030 is an Australian economy that promotes optimal human and planetary health for current and future generations. To achieve this, current patterns of corporate practice and consumption of harmful commodities and services need to change. In this chapter, we suggest ways forward for Australia, focusing on pragmatic actions that can be taken now to redress the power imbalances between corporations and Australian governments and citizens. We begin by exploring how the terms of health policy making must change to protect it from conflicted commercial interests. We also examine how marketing unhealthy products and services can be more effectively regulated, and how healthier business practices can be incentivised. Finally, we make recommendations on how various public health stakeholders can hold corporations to account, to ensure that people come before profits in a healthy and prosperous future Australia. CHAPTER 6: DIGITAL DETERMINANTS OF HEALTH: THE DIGITAL TRANSFORMATION: We live in an age of rapid and exponential technological change. Extraordinary digital advancements and the fusion of technologies, such as artificial intelligence, robotics, the Internet of Things and quantum computing constitute what is often referred to as the digital revolution or the Fourth Industrial Revolution (Industry 4.0). Reflections on the future of public health and health promotion require thorough consideration of the role of digital technologies and the systems they influence. Just how the digital revolution will unfold is unknown, but it is clear that advancements and integrations of technologies will fundamentally influence our health and wellbeing in the future. The public health response must be proactive, involving many stakeholders, and thoughtfully considered to ensure equitable and ethical applications and use. CHAPTER 7: GOVERNANCE FOR HEALTH AND EQUITY: A VISION FOR OUR FUTURE: Coronavirus disease 2019 has caused many people and communities to take stock on Australia's direction in relation to health, community, jobs, environmental sustainability, income and wealth. A desire for change is in the air. This chapter imagines how changes in the way we govern our lives and what we value as a society could solve many of the issues Australia is facing - most pressingly, the climate crisis and growing economic and health inequities. We present an imagined future for 2030 where governance structures are designed to ensure transparent and fair behaviour from those in power and to increase the involvement of citizens in these decisions, including a constitutional voice for Indigenous peoples. We imagine that these changes were made by measuring social progress in new ways, ensuring taxation for public good, enshrining human rights (including to health) in legislation, and protecting and encouraging an independent media. Measures to overcome the climate crisis were adopted and democratic processes introduced in the provision of housing, education and community development.


Subject(s)
Health Equity/trends , Health Promotion/trends , Australia , Commerce , Community Health Planning/trends , Digital Technology/trends , Environmental Health/trends , Forecasting , Health Services, Indigenous/trends , Humans , Native Hawaiian or Other Pacific Islander , Social Determinants of Health/trends
18.
Environ Int ; 153: 106533, 2021 08.
Article in English | MEDLINE | ID: mdl-33799230

ABSTRACT

BACKGROUND: Mental health is an important public health issue globally. A potential link between heat exposure and mental health outcomes has been recognised in the scientific literature; however, the associations between heat exposure (both high ambient temperatures and heatwaves) and mental health-related mortality and morbidity vary between studies and locations. OBJECTIVE: To fill gaps in knowledge, this systematic review aims to summarize the epidemiological evidence and investigate the quantitative effects of high ambient temperatures and heatwaves on mental health-related mortality and morbidity outcomes, while exploring sources of heterogeneity. METHODS: A systematic search of peer-reviewed epidemiological studies on heat exposure and mental health outcomes published between January 1990 and November 2020 was conducted using five databases (PubMed, Embase, Scopus, Web of Science and PsycINFO). We included studies that examined the association between high ambient temperatures and/or heatwaves and mental health-related mortality and morbidity (e.g. hospital admissions and emergency department visits) in the general population. A range of mental health conditions were defined using ICD-10 classifications. We performed random effects meta-analysis to summarize the relative risks (RRs) in mental health outcomes per 1 °C increase in temperature, and under different heatwaves definitions. We further evaluated whether variables such as age, sex, socioeconomic status, and climate zone may explain the observed heterogeneity. RESULTS: The keyword search yielded 4560 citations from which we identified 53 high temperatures/heatwaves studies that comprised over 1.7 million mental health-related mortality and 1.9 million morbidity cases in total. Our findings suggest associations between heat exposures and a range of mental health-related outcomes. Regarding high temperatures, our meta-analysis of study findings showed that for each 1 °C increase in temperature, the mental health-related mortality and morbidity increased with a RR of 1.022 (95%CI: 1.015-1.029) and 1.009 (95%CI: 1.007-1.015), respectively. The greatest mortality risk was attributed to substance-related mental disorders (RR, 1.046; 95%CI: 0.991-1.101), followed by organic mental disorders (RR, 1.033; 95%CI: 1.020-1.046). A 1 °C temperature rise was also associated with a significant increase in morbidity such as mood disorders, organic mental disorders, schizophrenia, neurotic and anxiety disorders. Findings suggest evidence of vulnerability for populations living in tropical and subtropical climate zones, and for people aged more than 65 years. There were significant moderate and high heterogeneities between effect estimates in overall mortality and morbidity categories, respectively. Lower heterogeneity was noted in some subgroups. The magnitude of the effect estimates for heatwaves varied depending on definitions used. The highest effect estimates for mental health-related morbidity was observed when heatwaves were defined as "mean temperature ≥90th percentile for ≥3 days" (RR, 1.753; 95%CI: 0.567-5.421), and a significant effect was also observed when the definition was "mean temperature ≥95th percentile for ≥3 days", with a RR of 1.064 (95%CI: 1.006-1.123). CONCLUSIONS: Our findings support the hypothesis of a positive association between elevated ambient temperatures and/or heatwaves and adverse mental health outcomes. This problem will likely increase with a warming climate, especially in the context of climate change. Further high-quality studies are needed to identify modifying factors of heat impacts.


Subject(s)
Climate Change , Hot Temperature , Humans , Morbidity , Outcome Assessment, Health Care , Temperature
19.
Environ Int ; 147: 106366, 2021 02.
Article in English | MEDLINE | ID: mdl-33422969

ABSTRACT

Transformational change is urgently needed to address planetary health challenges in cities. Through an interdisciplinary overview of the literature, we consider how to frame and unpack city-level transformation towards synergistic benefits for urban health and environmental sustainability. By describing the characteristics of a 'healthy sustainable city' and by bringing together the ideas underlying frameworks for health and sustainability, we develop a conceptual understanding of how cities may progress towards achieving significant improvements in health and the environment. We investigate how urban change works, and build a theoretical understanding of how urban change may be directed to integrate health and sustainability. We conclude that urban transformation needs to be a multi-scalar process across city sectors to meet the scale, speed and form of change required. We propose that this can best be achieved in practice through a composition of mechanisms, including strengthening city governance, enabling technological and social innovations, applying sustainable urban planning and infrastructure development, and impelling social behaviour change; supported by systems-driven policy and practice-focused scientific evidence.


Subject(s)
City Planning , Urban Health , Cities
20.
Med J Aust ; 213(11): 490-492.e10, 2020 12.
Article in English | MEDLINE | ID: mdl-33264812

ABSTRACT

The MJA-Lancet Countdown on health and climate change was established in 2017, and produced its first Australian national assessment in 2018 and its first annual update in 2019. It examines indicators across five broad domains: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. In the wake of the unprecedented and catastrophic 2019-20 Australian bushfire season, in this special report we present the 2020 update, with a focus on the relationship between health, climate change and bushfires, highlighting indicators that explore these linkages. In an environment of continuing increases in summer maximum temperatures and heatwave intensity, substantial increases in both fire risk and population exposure to bushfires are having an impact on Australia's health and economy. As a result of the "Black Summer" bushfires, the monthly airborne particulate matter less than 2.5 µm in diameter (PM2.5 ) concentrations in New South Wales and the Australian Capital Territory in December 2019 were the highest of any month in any state or territory over the period 2000-2019 at 26.0 µg/m3 and 71.6 µg/m3 respectively, and insured economic losses were $2.2 billion. We also found growing awareness of and engagement with the links between health and climate change, with a 50% increase in scientific publications and a doubling of newspaper articles on the topic in Australia in 2019 compared with 2018. However, despite clear and present need, Australia still lacks a nationwide adaptation plan for health. As Australia recovers from the compounded effects of the bushfires and the coronavirus disease 2019 (COVID-19) pandemic, the health profession has a pivotal role to play. It is uniquely suited to integrate the response to these short term threats with the longer term public health implications of climate change, and to argue for the economic recovery from COVID-19 to align with and strengthen Australia's commitments under the Paris Agreement.


Subject(s)
COVID-19 , Climate Change , Environmental Exposure , Public Health , Wildfires , Australia , Humans , Pandemics , Particulate Matter , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...